
# IJC PREDICTIVE MAINTENANCE PRACTICES AND ITS IMPACT ON RELIABILITY

# Indo Jordan Chemical Co

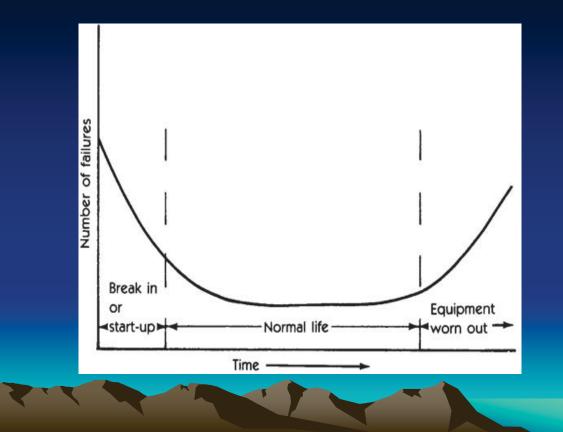


## IJC PREDICTIVE MAINTENANCE PRACTICES AND ITS IMPACT ON RELIABILITY

### **ABOUT THE COMPLEX**

- The Phosphoric Acid Complex consists of
  - 700 MT P2O5 / day Phosphoric Acid plant, based on Hydro Agri's (Norway) Single Stage Hemi Hydrate process.
  - 2,000 MT H2SO4 /day Sulphuric Acid plant, based on Monsanto's (USA) Double Conversion Double Absorption process.
  - Associated Utilities.
- In addition, Phosphoric acid storage facility at Aqaba consists of
  - 4 X 5,000 m3 capacity storage tanks.

### Contents:


- 1. Difference between preventive maintenance and predictive maintenance.
- 2. IJC Implemented predictive maintenance in parallel with preventive maintenance.
- 3. Steps were followed to implement predictive maintenance.
- 4. Predictive Maintenance techniques.
- 5. Achievement and Impact on reliability.
- 6.Conclusion

# 1. Difference between preventive maintenance and predictive maintenance.

#### Preventive maintenance:

- Preventive maintenance is maintenance that is regularly performed on a piece of equipment to reduce the chance of failure .
- Preventative maintenance is performed while the equipment is still working, so that it does not break down unexpectedly.
- All preventive maintenance programs are time-driven, that is mean that maintenance based on history.

Preventive Maintenance depend on MTBF



#### Predictive maintenance:

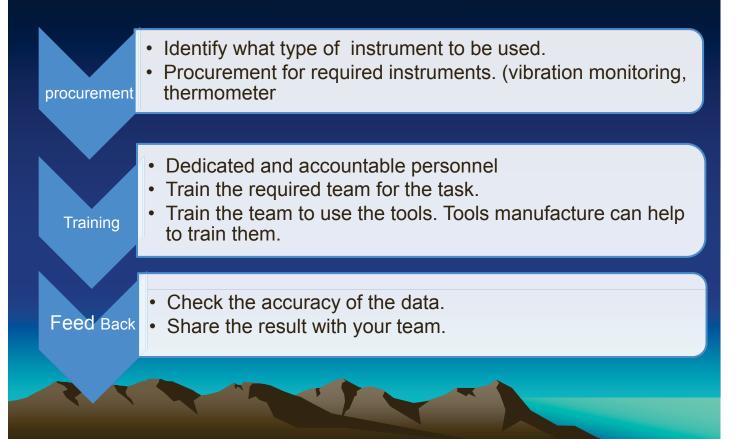
- The aim of predictive maintenance is to predict when equipment failure might occur.
- To prevent occurrence of the failure by performing maintenance.
- It is philosophy, or attitude, simply stated, uses the actual operating operation condition of plant equipments and system to optimize total plant operation.
- Predictive maintenance is a condition- driven preventive maintenance

2. IJC Implemented predictive maintenance in addition to preventive maintenance.




#### **Preventive Maintenance**

- Routine of scheduling.
- Performing repair tasks before it becomes necessary.
- Unneeded repairs can happen.
- More cost.
- Reliability is less.


#### **Predictive Maintenance**

- Data about the equipment is collected and analyzed.
- Performing repair to predict a machine breakdown or failure.
- Repairs are made as needed.
- Less cost.
- Reliability is high.

# 3.Steps Were Followed To Implement Predictive Maintenance.



# 3. Steps Were Followed To Implement Predictive Maintenance.



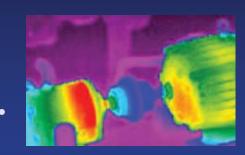
### Predictive maintenance technique

- 1- Vibration Monitoring
- Portable Vibrometer is used.
- Identify the location for measurin and reference reading.
- Vibration readings were plotted.
- RCA for high vibration.

• Future plan: introduce the vibration analyzer.

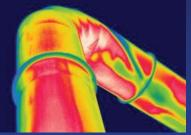


### 2- Tribology

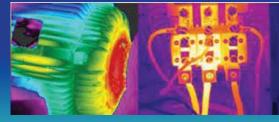

- Lubricating oil analysis.
- Conserve and extend the useful lubricants.

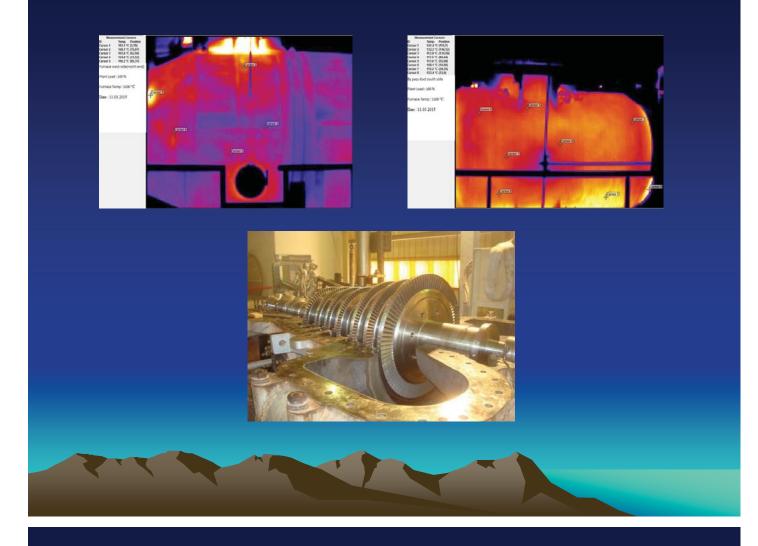


 Wear particle analysis provides direct information about the wearing condition of the machine.


### 3- Thermography

 Identify the high temperature in equipments, that is indication for high friction.




• High Temp in lines, vessels.



• High Temp in electrical items.





- 4- Visual inspectiona) Ultrasound
- Use to monitor the noise level.
- The turbulent flow of liquids and gases through a restricted orifice (i.e., leak).
- Ultrasonic has been, and continues to be, a primary test methodology for materials testing

### 2) Visual inspection

- This can vary from one to others plants.
- Checking for any up normal condition.
- Checking for any external effect on the equipments.

### **Boiler Details**

| Boiler Reg. No.       | : FM-038 / 52                                               |
|-----------------------|-------------------------------------------------------------|
| Make                  | : M/s. Thermax Babcock & Wilcox Limited.                    |
| Year of Commissioning | : 1997                                                      |
| Boiler Capacity       | : 30.6 TPH                                                  |
| Steam Pressure        | : 12 Bar                                                    |
| Steam Temperature     | : 192 °C (Saturated)                                        |
| Duration of Study     | : October 14 <sup>th</sup> to October 17 <sup>th</sup> 2014 |

#### Test scope and procedure

| SR. No. | COMPONENT                            | AREA / LOCATION                                                                                                                                                                               | TESTS TO BE CARRIED OUT                                                                                                                          |
|---------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | Steam Drum                           | <ul><li>Drum internals</li><li>100% ligaments</li></ul>                                                                                                                                       | <ul> <li>Visual Inspection.</li> <li>Florescent Magnetic<br/>Particle Inspection (FMPI)</li> </ul>                                               |
| 2       | Mud Drum                             | <ul><li>Drum Inside.</li><li>100% ligaments</li></ul>                                                                                                                                         | <ul> <li>Visual Inspection.</li> <li>Florescent Magnetic<br/>Particle Inspection (FMPI)</li> </ul>                                               |
| 3       | Water wall<br>tubes                  | <ul> <li>Overall</li> <li>On every alternate tube on RHS and LHS and rear wall.</li> <li>Tube Sampling (3 Nos.)</li> </ul>                                                                    | <ul> <li>Visual Inspection</li> <li>Ultrasonic Thickness<br/>Gauging.</li> <li>Furnace wall tube sample<br/>for Laboratory testing.</li> </ul>   |
| 4       | Boiler bank<br>tubes                 | <ul> <li>Overall</li> <li>On accessible<br/>locations (Front and<br/>rearmost rows) at 2<br/>elevations</li> <li>On randomly selected<br/>tubes through drums</li> </ul>                      | <ul> <li>Visual Inspection</li> <li>Dimensional Measurement</li> <li>Ultrasonic Thickness<br/>Gauging</li> <li>Fiber optic Inspection</li> </ul> |
| 5       | Boiler<br>Operation &<br>Maintenance | <ul> <li>Failure History study.</li> <li>Boiler Operation Study.</li> <li>Preservation methods<br/>study, if any.</li> <li>Boiler maintenance<br/>study. Log sheet data<br/>study.</li> </ul> | Since commissioning                                                                                                                              |

### 5. Achievement and Impact on Reliability.

- Ability to minimize the sudden break down for all rotary equipments.
- Increase the belt life in our horizontal vacuum belt filter to 4 years compare with before 3 years life. By close monitoring for the hardness and visual inspection.
- Replacement the waste heat boiler just on time before catastrophic failure.
- Replacement the turbine rotor just on time to improve the efficiency and prevent high vibration in turbine.

- Re gasket for plate heat exchanger before efficiency get reduced.
- Minimize the over-time cost.
- Minimize the inventory.

### Conclusion

If we don't apply the Pdm



- Maintenance always need to be standby.
- Maintenance Over-Time will be increased.
- Damage will extend further.

### If we apply the Pdm.

 Simply Maintenance team and Management will be happy

– No surprise break downs



- Reduced need for "back up" equipment
- Minimize maintenance resource

