

SELECTION OF SCREENING EQUIPMENT FOR FINAL PRODUCT QUALITY -OMIFCO'S EXPERIENCE IN UREA GRANULATORS

Rashid AL-FARSI, Sr. Mech. Engr

OUTLINE

- INTRODUCTION ABOUT OMIFCO
- HOW UREA GRANULATION IS WORKING (PFD)
- SCREENING OF UREA GRANULES
- PROBLEMS WITH THE EXISTING SCREENS DESIGN
- STUDY FOR SOLUTIONS
- BEST OPTION CRITERIA
- INSTALLATION NEW SCREEN (ROTEX)
- COMPARISON
- CONCLUSION

OMIFCO : (Joint Initiative of Govt. of Oman & India)

Equity Holders

- OOC : Oman Oil Company S.A.O.C, Oman, (50 % shareholder)
- IFFCO : Indian Farmers Fertiliser Cooperative Ltd., India (25 % shareholder)
- KRIBHCO : Krishak Bharati Cooperative Ltd., India, (25 % shareholder)

Plant Capacity & Technology

<u>Plant</u>	Capacity	Licensor	
Ammonia*	2 x 1750 MTPD	Haldor Topsoe	
Urea**	2 x 2530 MTPD	Snamprogetti	
 * CO2 removal system, M/s Giammarco Vetrocoke ** Urea granulation, M/s Hydro Fertiliser ,Technology 			
Annual Installed capacity, MT			
Ammonia	: 11,9	0,000	
Urea	: 16,5	52,000	

Project Site

- Located at Sur Industrial State on coast near Sur (approx. 200 KM away from MCT on new Quarayat Road).
- Total plant area is 170 hectare which includes provision for future expansion.
- Deep water 1,000 M offshore for jetty facilities& seawater cooling
- Gas supply pipeline available since 1995.

Project Milestones

- Project awarded on a Lump Sum Turnkey basis to Snamprogetti ,Italy &Technip-Coflexip France with a completion schedule of 35 months
- Completion of project achieved without any cost overrun and well within scheduled period.
- > Operation, monitor & control of whole complex is done from Central control room (CCR).

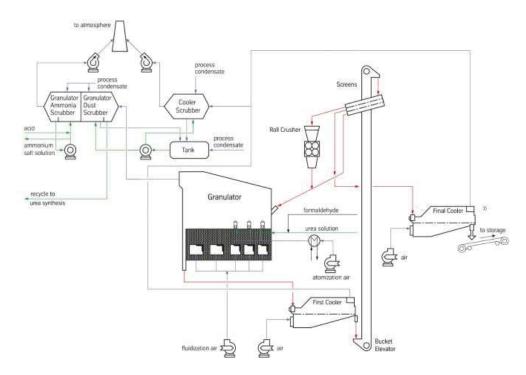
OMIFCO – Some Milestones

Project Commencement date	15.08.2002
Natural gas charged in the complex	Jul 04
Power production started	Aug.04
Sea water intake system started	Sep.04
Steam production started	Sep 04
Desalinated water production started	Oct 04
Nitrogen production started	Oct 04
Ammonia storage commissioned	Nov 04
CO2 production at Ammonia-I	13.03.2005

OMIFCO – Some Milestones

Ammonia production -train 1	28 Mar. 05
Urea production - train 1	12 April 05
Ammonia production -train 2	14 May 05
> Urea production - train 2	28 May 05
First ammonia export	20 April 05
First urea export	07 June 05
Preliminary acceptance	14 July 05

UFT FLUID BED GRANULATION PROCESS DESCRIPTION


- The feed solution, typically a 97% urea solution, is dispensed to the injection heads and finely atomized upwards into the bed of moving particles. This spraying is assisted by air.
- Fluidization air delivered by a fan under the perforated plate, flows through the product layer and is exhausted at the granulator top.
- Granular urea flows out of the granulator at a controlled rate to a fluid bed cooler. After cooling, the granules are lifted by means of a bucket elevator to the screening section.
- The fines fraction is recycled directly to the granulator whereas the coarse material is first crushed and thereafter sent to the granulator as seeding particles.

UFT FLUID BED GRANULATION PROCESS DESCRIPTION

- The on-size product is sent to the warehouse after final cooling at the required storage temperature. The cooling of urea to a constant and sufficiently low storage temperature is one of the most significant parameters to avoid caking.
- The air from the granulator and coolers contains some urea dust which is easy to catch in standard scrubbing equipment. With industrially proven scrubbers, efficiencies of more than 99.5% are easily obtained. Therefore dust outlet concentrations of less than 0.1 kg per ton of urea produced can be achieved.
- Operation of the fluid bed granulation plant is simple and very reliable, guaranteeing a high on-stream factor. The granulator itself contains no moving parts, and its design is optimized to limit down time for cleaning to a strict minimum.

GRANULATION (PFD)

^{II} Depending on site condition, Bulk Flow Cooler can be applied as alternative.

PRODUCT CHARACTERISTICS

Urea granules produced in the UFT fluid bed granulation have a well-rounded shape and are very hard. They resist particularly well to crushing and abrasion and hence are dust free, non-caking and completely free flowing, even after long storage and numerous handling and shipment operations.

PRODUCT SPECIFICATION (TYPICAL)

	Standard Size	Large Size
Total Nitrogen	46.3 % wt	46.3 % wt
Biuret	0.7 – 0.8 % wt	0.7 – 0.8 % wt
Moisture	0.2 % wt	0.3 % wt
Crushing Strength	4.1 kg (Ø: 3 mm)	10.0 kg (Ø: 7 mm)
Average Diameter	3.2 mm	6.3 mm
Size Distribution	95 % wt (2 - 4 mm)	95 % wt (4 - 8 mm)
Formaldehyde	0.4 % wt	0.4 % wt

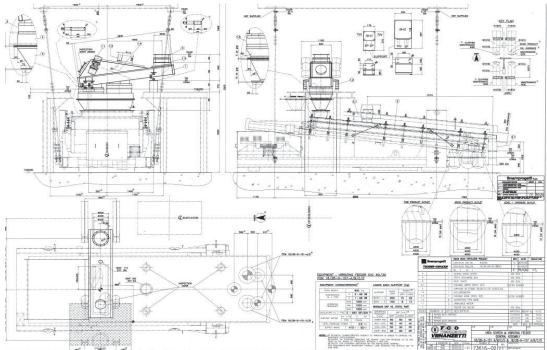
PROCESS PARAMETERS (NORMAL OPERATIONS)

Urea Solution:	temperature Pressure Concentration	: 132 – 135 Deg.C. : 2 bar (g) (at granulator header) : 96%±0.5%(at granulator header)
Atomization Air:	temperature Pressure Flow rate	: 135 Deg.C. : 0.45 bar (g) (at granulator header) : 66240 kg/h dry air
Fluidization air:	temperature Pressure Flow rate	: around 52 Deg.C.at granulator inlet : around 700 mmWC (after dampers) : 389124 kg/h dry air
Fluid bed:	temperature height	: 104°-108°C in granulator chambers : around 1.0 m respectively 500-600 WC g

•	Recycle solution:	concentration	: approx45% urea
		Temperature	: around 40°-50°C
٠	Solids temperature	:granulator outlet	:95°C
		First fluid bed cooler outlet	:70°C
		Final fluid bed cooler outlet	:45°C

VIBRATING SCREENS INSTALLED IN OMIFCO PROJECT FOR SEPARATION OF FRACTIONS OF UREA GRANULES

Product Screening Machine


•	Model	:90 HVSM2
•	Make:	:CHAUVIN
•	Dimensions per deck :	:2000X4000
•	No. of Decks	:2
•	Screening area per deck	: 32 m2
•	Total weight when empty	: 8800 kg
•	Weight of vibrating body	: 4400 kg
•	Slope	:6°
•	No. of screening machines installed p	er granulator : 4
•	Capacity of each screening machine	: 40 t/h
•	Spare screening machine available	: No

MOTION CHARACTERISTICS

•	Acceleration	:2 g
•	Speed	:200 rpm

CAHUVIN SCREEN

CHAUVIN SCREEN IN OMIFCO

PROBLEMS FACING WITH THE CHAUVIN MAKE SCREENS IN OMIFCO

- The major moving elements which are prone to fail frequently in CHAUVIN screens are:
 - Long ropes
 - Suspension cables
 - Stabilizing rods
 - LHS & RHS cradle beams
 - Gear box bearings (each gear box consisting of 7 bearings)
 - Top bearing
 - Repair/replacement of screen mesh is tough
 - Wiremesh life is hardly one year
 - Declogging balls life is around one year

Long Ropes

PROBLEMS FACING WITH THE CHAUVIN MAKE SCREENS IN OMIFCO

Long Ropes

Suspension cables

PROBLEMS FACING WITH THE CHAUVIN MAKE SCREENS IN OMIFCO

Suspension cables

Stabilizing rods

PROBLEMS FACING WITH THE CHAUVIN MAKE SCREENS IN OMIFCO

LHS & RHS cradle beams

Gear box bearings

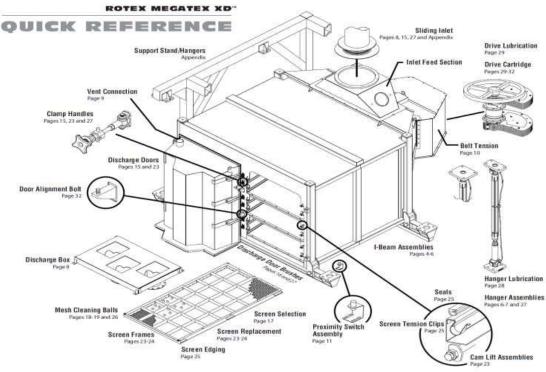
PROBLEMS FACING WITH THE CHAUVIN MAKE SCREENS IN OMIFCO

Gear box bearings

- Repair/replacement of screen mesh is tough
- Wiremesh life is hardly one year
- Declogging balls life is around one year

HOW CHAUVIN SCREENS RUNNING

- To select the suitable screening machines, the following bench marks were set in selection of machines.
 - No Gear box
 - No ropes
 - No couplings
 - Higher Capacity (each screen capacity=3 times to CHAUVIN screen)
 - Replacement of screen mesh shall be easy
 - ♦Weight of the screen shall not be more than 10 T



ROTEX MEGATEX XD-5300

ROTEX MEGATEX XD-5300

TECHNICAL SPECIFICATIONS OF ROTEX MEGATEX SCREENS

Model :Megatex -XD-5300-2 Make :Rotex, Europe No.of Decks : 2 Deck Screening area of each deck : 28 m2 Capacity of the screening machine : 2300 (final product) Screen frame size :1219 X 2286 mm No.of screen frames per screen : 20 Nos. Weight of the screen : 8210 Kg ٠ Speed of the drive mechanism : 1000 rpm : 15 KW Power

ROTEX MOTION – WHY IT IS EFFECTIVE?

- Gyratory motion at inlet end : Quickly spreads & stratifies the material
- Elliptical motion at centre section : Provides gentle conveying
- Linear motion at discharge end : For effective near size separation

HOW ROTEX SCREENS RUNNING

CONCLUSION

- We have achieved the following benefits from the installed Rotex Megatex screens:
 - Higher capacity and now spare screen is available
 - Screen cleaning frequency is 40-50 days
 - Life of screen mesh is more than 2 Years
 - Life of PU balls is more than 2 Years
 - No major failures experienced
 - Highest reliability achieved
 - Product quality achieved 95% (2-4 mm)

